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“This ‘next step in [economic] analysis,’ conjectured the doyen of mathemat- 
ical economics, Kenneth Arrow ([3], p.S398), ‘[would be] a more consistent 
assumption of computability  in the formulation of economic hypotheses.’ But 
this has not  been taken by economic theorists...” [4] 

 
0. PHILOSOPHIES OF MATHEMATICS [5: 4] 
 

1. Mathematics is about some independently existing abstract “Platonic” reality, the 
truths of which are objective and graspable through the employment of pure 
reason 

2. Mathematics is the objective part of human conceptions and constructions; 
whether or not there are essential limits to the power of human reasoning cannot 
be answered at this time 

 
I. SOLVABLE AND UNSOLVABLE PROBLEMS 
 
In 1900, after the birth of mathematical economics, Hilbert gave a dramatic address in 
Paris at the 2nd International Congress of Mathematicians, stating that every and all 
problems are solvable, or what he called the axiom of solvability. “There is the problem. 
Seek its solution. You can find it by pure reason, for in mathematics there is no 
ignoramibus.” [5]  
 
In the 1930s, mathematical discoveries by Kurt Gödel, Emil Post, Alan Turing, and 
Alonzo Church turned Hilbert’s axiom of solvability on its head. There were indeed 
unsolvable problems: in classical real analysis, paradoxes such as the unprovability of 
“this statement is false;” in computable analysis, an unsolvable problem was a problem 
for which a Turing machine computing the solution would never halt.  
 
II. DOES ECONOMICS NEED TO BE ALGORITHMIC? 
 
Some mathematicians claim that mathematics doesn’t make sense as a tool for humans to 
study their reality if we cannot calculate in it (Wittgenstein). Real analysis underpinned 
by Zermelo-Fraenkel set theory plus the axiom of choice is empirically meaningless, in 
that you do not need to develop a method for solving a problem in order to claim it “can 
be solved.” Real systems calculate, and any applied work is calculation. Thus, real 
solutions need to be calculable.  
 
Many of the questions posed in traditional mathematical economics are formally 
meaningless in computable analysis. They result in recursive undecidabilities, 
algorithmic unsolvabilities, and uncomputabilities, and formal incompleteness. 
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Yet, the framework and results of traditional mathematical economics form “the 
benchmark and the ideal, respectively, to which agents and economic systems must 
conform on pain of giving rise to irrationalities and inefficiencies” (4: 6). 
 
III. LIST OF RESULTS  
 
First six are from [4]: 
 

1. Nash equilibria of finite games are constructively indeterminate (Velupillai; 
Papadimitriou) 

2. Computable General Equilibria are neither computable nor constructive 
(Velupillai)  

3. The Two Fundamental Theorems of Welfare Economics are Nonconstructive and 
Uncomputable, respectively (Velupillai) 

4. There is no effective procedure to generate preference orderings (Velupillai) 
5. Recursive Competitive equilibria, underpinning the RBC model and, hence, the 

Stochastic Dynamic General Equilibrium benchmark model of Macroeconomics, 
are uncomputable.  

6. There are games in which the player who in theory can always win cannot do so 
in practice because it is impossible to supply him / her with effective instructions 
regarding how he / she should play in order to win. (Rabin: see proof [9: 71]) 

 
Many of the results are derived from recasting traditional economic questions in 
alternative logical and mathematical frameworks. 
 
IV. ALTERNATIVE MATHEMATICAL FRAMEWORKS 
 
1. classical real analysis 
2. constructive analysis 
3. computable analysis 
4. non-standard analysis 
 

1. Classical real analysis: Axiomatic mathematics of Russell and Whitehead’s 
Mathematica Principia.  

a. Zermelo-Fraenkel axioms, including the Axiom of Choice, hold in this 
framework. 

 
2. Constructive mathematics: “Constructive mathematics is distinguished from its 

traditional counterpart, classical mathematics, by the strict interpretation of the 
phrase “there exists” as “we can construct”. In order to work constructively, we 
need to re-interpret not only the existential quantifier but all the logical 
connectives and quantifiers as instructions on how to construct a proof of the 
statement involving these logical expressions.” [1] 
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3. Computable analysis: “A mathematical problem is computable if it can be solved 
in principle by a computing device. Some common synonyms for “computable” 
are “solvable”, “decidable”, and “recursive.”” [2]  

a. Questions of computability usually relate to whether a solution is 
computable in principle and/or in practice.  

b. Whether a solution is computable in principle can be answered by whether 
or not an ideal computer (Turing Machine) could solve it, in principle.  

c. Whether a solution is computable in practice is answerable by how long 
the computation will take. For instance, in the 1930s Tarski established a 
decision procedure for the algebra of real numbers; however, in the 1970s 
Fischer and Rabin showed that no algorithm for the algebra of real 
numbers can work faster than the exponential rate in general. 

 
V. ALTERNATIVE MATHEMATICAL LOGICAL SYSTEMS 
 
1. set theory 
2. proof theory 
3. recursion theory 
4. model theory 
 
VI. MATHEMATICAL ECONOMICS: Currently, apart from the tiny group doing 
computable economics, takes the form of classical real analysis & set theory. Why? 
Possibly a combination or historical and policy-exigent reasons. There does not appear to 
be a good scientific reason why mathematical economics is done entirely in classical real 
analysis & set theory.  
 

1. Mirowski (2002) suggests that mathematical economics may get its deterministic 
nature from its development just before the development of the Second Law of 
Thermodynamics.  

a. “We may safely accept as a satisfactory scientific hypothesis that the 
doctrine so grandly put forward by Laplace, who asserted that a perfect 
knowledge of the universe, as it existed at any moment, would give perfect 
knowledge of what was to happen thenceforth and forever after. Scientific 
inference is impossible, unless we regard the present as the outcome of 
what is past, and the cause of what is to come. To the perfect intelligence 
nothing is uncertain” [(Jevons) 8: 738-39] 

2. I suggest that the hopes pinned on mathematical economics as an instrument with 
which to control and plan the economy were raised before the economists 
absorbed the Gödel-Post-Church-Turing undecidability results.  

 
VII. MATHEMATIZING ECONOMICS 
 
Economics should be mathematized to be useful in formalizing economic concepts and 
entities with a view to application; that is, the tools of mathematical economics need to 
have numerical and computational content.  
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BACK MATTER 
 
SOME AXIOMS AND UNCOMPUTABLE AND NON-CONSTRUCTIVE MATH IN 
DEBREU’S THEORY OF VALUE 
 
1. The Heine-Borel Theorem (uncomputable) 
2. The Bolzano-Weierstrauss Theorem (non-constructive) 
3. The Completeness Theorem (axiom of choice) 
4. Specker’s Theorem (computable with heavy caveats) 
5. The Hahn-Banach Theorem (uncomputable and non-constructive in its classical form) 
6. Brouwer’s Fixed Point Theorem and Kakutani’s Fixed Point Theorem (non-
constructive) 
7. “There are clear intuitive notions of continuity which cannot be [topologically] 
defined” [4: 12 citing 7: 342] 
 
DEFINITIONS 
 
algorithm: A step-by-step procedure or sequence of rules to go from the data of any 
specific problem of a certain type to its solution. The data could be a number, an 
expression, a sequence of numbers and symbols, etc. 
 
completeness: An axiom system T is complete if every proposition in the subject matter 
can be proved in T.   
 
consistency: A system or statement is consistent if a model of it can be produced, by 
Gödel’s Incompleteness Theorem. That is, a theory T (a set of axioms) is inconsistent if 
there is a proof in T of a formula and its negation.  
 
independence: statement A is independent from a set of statements S if the negation of A 
is consistent with S. 
 
meta-mathematics: The consideration of the consistency, completeness, and 
independence of axioms within a mathematical framework 
 
The Axiom of Choice: One of the Zermelo-Fraenkel axioms, which implies that for any 
set there exists a well-ordering of that set. However, the axiom doesn’t tell you how to 
construct the well-ordering of that set. 
 
Turing Machine: An ideal computer with no restrictions placed on how much time and 
memory space are required to carry out any given computation. A Turing Machine can 
compute what can be computed in principle.  
 
undecidable/uncomputable/unsolvable problem: No possible algorithm can be used to 
determine the validity of the solution to the problem in a given mathematical framework. 
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